Preprints
- Yi Gao, Miao Xu, Min-Ling Zhang. Complementary to Multiple Labels: A Correlation-Aware Correction Approach. arXiv: 2302.12987, 2023
- Yawen Zhao, Mingzhe Zhang, Chenhao Zhang, Weitong Chen, Nan Ye, Miao Xu. A Boosting Algorithm for Positive-Unlabeled Learning. arXiv: 2205.09485, 2022.
- Cheng-Yu Hsieh, Wei-I Lin, Miao Xu, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama. Active Refinement for Multi-Label Learning: A Pseudo-Label Approach. arXiv:2109.14676, 2021.
- Miao Xu, Bingcong Li, Gang Niu, Bo Han, Masashi Sugiyama. Revisiting Sample Selection Approach to Positive-Unlabeled Learning: Turning Unlabeled Data into Positive rather than NegativearXiv:1901.10155, 2019
- Miao Xu, Gang Niu, Bo Han, Ivor W. Tsang, Zhi-Hua Zhou, Masashi Sugiyama. Matrix Co-completion for Multi-label Classification with Missing Features and Labels. arXiv:1805.09156, 2018.
Conference
- Yi Gao, Yong-Gang Luo, Ju-Cheng Yang, Miao Xu, Min-Ling Zhang. Unlearning From Weakly Supervised Learning. IJCAI 2024.
- Shaofei Shen, Chenhao Zhang, Yawen Zhao, Alina Bialkowski, Weitong Chen, Miao Xu. Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models. ICLR 2024.
- Tong Wang, Yuan Yao, Feng Xu, Miao Xu, Shengwei An, Ting Wang. Inspecting Prediction Confidence for Detecting Black-Box Backdoor Attacks. AAAI 2024.
- Shaofei Shen, Chenhao Zhang, Yawen Zhao, Alina Bialkowski, Weitong Chen, Miao Xu. CaMU: Disentangling Causal Effects in Deep Model Unlearning. SDM 2024
- Yixuan Qiu, Weitong Chen, Miao Xu. A Progressive Sampling Method for Dual-Node Imbalanced Learning with Restricted Data Access. ICDM 2023 (Long Paper).
- Yi Gao, Miao Xu, Min-Ling Zhang. Unbiased risk estimator to multi-labeled complementary label learning. IJCAI 2023.
- Shaofei Shen, Mingzhe Zhang, Weitong Chen, Alina Bialkowski, Miao Xu. Words Can be Confusing: Stereotype Bias Removal in Text Classification at the Word Level. PAKDD 2023.
- Jonathan Wilton, Abigail M. Y. Koay, Ryan K. L. Ko, Miao Xu, Nan Ye. Positive-Unlabeled Learning using Random Forests via Recursive Greedy Risk Minimization. NeurIPS 2022
- Ji Liu, Zenan Li, Yuan Yao, Feng Xu, Xiaoxing Ma, Miao Xu, Hanghang Tong. Fair Representation Learning: An Alternative to Mutual Information. KDD 2022: 1088-1097
- Shaofei Shen, Weitong Chen, Miao Xu. What Leads to Arrhythmia: Active Causal Representation Learning of ECG Classification. AI 2022: 501-515
- Mingzhe Zhang, Lin Yue, Miao Xu. ESTD: Empathy Style Transformer with Discriminative Mechanism. ADMA (2) 2022: 58-72
- Yawen Zhao, Lin Yue, Miao Xu. A Boosting Algorithm for Training from Only Unlabeled Data. ADMA (2) 2022: 459-473
- Shaofei Shen, Miao Xu, Lin Yue, Robert Boots, Weitong Chen. Death Comes But Why: An Interpretable Illness Severity Predictions in ICU. APWeb/WAIM (1) 2022: 60-75
- Chenhao Zhang, Yanjun Zhang, Jeff Mao, Weitong Chen, Lin Yue, Guangdong Bai, Miao Xu. Towards Better Generalization for Neural Network-Based SAT Solvers. PAKDD (2) 2022: 199-210
- Yanda Wang, Weitong Chen, Dechang Pi, Lin Yue, Miao Xu, Xue Li. Multi-hop Reading on Memory Neural Network with Selective Coverage for Medication Recommendation. CIKM 2021: 2020-2029
- Yanda Wang, Weitong Chen, Dechang Pi, Lin Yue, Sen Wang, Miao Xu. Self-Supervised Adversarial Distribution Regularization for Medication Recommendation. IJCAI 2021: 3134-3140
- Guangxin Su, Weitong Chen, Miao Xu. Positive-Unlabeled Learning from Imbalanced Data. IJCAI 2021: 2995-3001
- Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu, Gang Niu, Bo An, Masashi Sugiyama. Pointwise Binary Classification with Pairwise Confidence Comparisons. ICML 2021: 3252-3262
- Khai Phan Tran, Weitong Chen, Miao Xu. Improving Traffic Load Prediction with Multi-modality - A Case Study of Brisbane. AI 2021: 254-266
- Kun Han, Weitong Chen, Miao Xu. Investigating Active Positive-Unlabeled Learning with Deep Networks. AI 2021: 607-618
- Yixuan Qiu, Weitong Chen, Lin Yue, Miao Xu, Baofeng Zhu. STCT: Spatial-Temporal Conv-Transformer Network for Cardiac Arrhythmias Recognition. ADMA 2021: 86-100
- Long Chen, Yuan Yao, Feng Xu, Miao Xu, Hanghang Tong. Trading Personalization for Accuracy: Data Debugging in Collaborative Filtering. NeurIPS 2020
- Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, Masashi Sugiyama. Provably Consistent Partial-Label Learning. NeurIPS 2020
- Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, Masashi Sugiyama. Progressive Identification of True Labels for Partial-Label Learning. ICML 2020: 6500-6510
- Bo Han, Gang Niu, Xingrui Yu, Quanming Yao, Miao Xu, Ivor W. Tsang, Masashi Sugiyama. SIGUA: Forgetting May Make Learning with Noisy Labels More Robust. ICML 2020: 4006-4016
- Takeshi Teshima, Miao Xu, Issei Sato, Masashi Sugiyama. Clipped Matrix Completion: A Remedy for Ceiling Effects. AAAI 2019: 5151-5158
- Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W. Tsang, Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. NeurIPS 2018: 8536-8546
- Sheng-Jun Huang, Miao Xu, Ming-Kun Xie, Masashi Sugiyama, Gang Niu, Songcan Chen. Active Feature Acquisition with Supervised Matrix Completion. KDD 2018: 1571-1579
- Miao Xu, Rong Jin, Zhi-Hua Zhou. CUR Algorithm for Partially Observed Matrices. ICML 2015: 1412-1421
- Miao Xu, Zhi-Hua Zhou. Incomplete Label Distribution Learning. IJCAI 2017: 3175-3181
- Miao Xu, Rong Jin, Zhi-Hua Zhou. Speedup Matrix Completion with Side Information: Application to Multi-Label Learning. NIPS 2013: 2301-2309
- Miao Xu, Yu-Feng Li, Zhi-Hua Zhou. Multi-Label Learning with PRO Loss. AAAI 2013
Journal
- Chenhao Zhang, Weitong Chen, Wei Emma Zhang, Miao Xu. Mitigating the Impact of Inaccurate Feedback in Dynamic Learning-to-Rank: A Study of Overlooked Interesting Items. ACM Transactions on Intelligent Systems and Technology, Accepted
- Jiaqi Lv, Biao Liu, Lei Feng, Ning Xu, Miao Xu, Bo An, Gang Niu, Xin Geng, Masashi Sugiyama. On the Robustness of Average Losses for Partial-Label Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5): 2569 - 2583 (2023)
- Yixuan Qiu, Feng Lin, Weitong Chen, Miao Xu. Pre-training in Medical Data: A Survey. Machine Intelligence Research (2023)
- Guanhua Ye, Hongzhi Yin, Tong Chen, Miao Xu, Quoc Viet Hung Nguyen, Jiangning Song. Personalized On-Device E-Health Analytics With Decentralized Block Coordinate Descent. IEEE J. Biomed. Health Informatics 26(6): 2778-2786 (2022)
- Miao Xu, Lan-Zhe Guo. Learning from group supervision: the impact of supervision deficiency on multi-label learning. Science China Informationis. 64(3) (2021)
- Miao Xu, Yu-Feng Li, Zhi-Hua Zhou. Robust Multi-Label Learning with PRO Loss. IEEE Trans. Knowl. Data Eng. 32(8): 1610-1624 (2020)
- Miao Xu, Zhi-Hua Zhou. Kernel method for matrix completion with side information and its application in multi-label learning. Science China Informationis. 48(1): 47-59, (2017)